
SECESA 2022

10th INTERNATIONAL SYSTEMS & CONCURRENT ENGINEERING FOR SPACE APPLICATIONS

CONFERENCE (SECESA 2022)

5 - 7 OCTOBER 2022

BOTTOM-UP AI-SUPPORT TO GENERATE CONCEPTUAL DESIGNS FOR

CONCURRENT ENGINEERING STUDIES WITH DRL

Jan-Peter Ceglarek(1), Reinhold Bertrand(2), Redouane Boumghar(3)

(1)Technical University Darmstadt, Parametry.ai

Präsidium der Technischen Universität Darmstadt

64277 Darmstadt

Email: ceglarek@fsr.tu-darmstadt.de

(2)European Space Agency, Technical University Darmstadt

Robert-Bosch-Str. 5, Darmstadt 64293, Germany

Email: reinhold.bertrand@esa.int

(3)Parametry.ai

Frankfurt am Main, Germany

Email: red@parametry.ai

INTRODUCTION

In today’s era of New Space, efficient mission design is more important than ever. Novel challenges, like the vastly

growing market of Commercial off-the-shelf (COTS) components and elaborating mission ideas or business cases that

remains unexplored, make the design process more and more challenging. Additionally, habits, risk aversion and efforts

optimization push known and proven solutions to be preferred over the exploration of new ideas - therefore decreasing

the chance of potential innovations. This could be avoided, if reliable information about components and their feasible

combinations would be available, to lower the technical risk, or reduce mission costs, to minimise the financial risk -

therefore promoting flight-novel components and integrations.

To improve performance, cost- and time-efficiency during the preliminary design phase of new space missions, ESA,

DLR and other space mission providers or universities like the TU Darmstadt implemented dedicated facilities to conduct

concurrent engineering (CE) studies. In iterative sessions a mission specific team of domain experts elaborate on a

possible implementation for a novel mission over the course of one to several weeks.

While previous research in the field of AI-supported CE mainly focused on utilising extracted knowledge from historical

mission designs, exploring the possibilities of an bottom-up approach was seen as a promising approach: generating

mission designs based on established engineering calculations and a database of components.

In the context of a master thesis such an Artificial Intelligence (AI) tool was developed as a part of the ESALab@TU

Darmstadt Concurrent Engineering Lab (CELab). The Deep Reinforcement Learning Concept Creator (DCC) can

generate a CubeSat design tailored to a set of requirements, based on a database of available COTS components.

The implemented system uses Deep Reinforcement Learning (DRL), which means, it’s learning strategy is Reinforcement

Learning (RL) with an additional Neural Network (NN). RL gets its name from the feedback that reinforces a taken

decision performed by the agent. The AI agent gains knowledge by taking actions in purpose-built environment, given a

current state and observing the environment’s reaction (reward). From the delta of the expected and observed behaviour,

the agent can adapt its strategy and improves its performance during its training. Traditionally originating from a robotic

context, the RL environment can contain simple numeric responses, but also more complex engineering calculations.

DRL is especially suited to build a bottom-up system generation approach with, since the existence of a controllable

learning environment allows it to asses mission designs without the need of historical missions and to learn from its

learning process. It could be shown [1], that RL is generally suited for concept generation, as intended by this work. It

was further stated, that DRL (especially DQN) has significant advantages over the used RL method (Q-learning).

RELATED WORK

Artificial Intelligence (AI) has proven its value in the past to offer capable solutions and is especially reliable in data-

driven situations. Besides many other approaches to support the space mission design, RL was shown to be capable of

SECESA 2022

generating CubeSat designs [1] where the decisions were just relying on regular engineering calculations. The difference

to other projects in the field of AI-supported CE lies in the general approach of the system on a fundamental level. While

the demonstrated work follows the aforementioned "buttom-up" approach, the remaining research to this topic followed

a more "top-down" approach, using historical mission data.

Berquand et al. [2] proposed an AI system to support CE studies by providing a knowledge base of historical missions,

with the idea to “provide easy and quick access to previous design decisions”. As a key challenge of their work, the

challenge of extracting relevant information from technical documentations, data sheets and alike is highlighted.

The proposed system would help the designing team with knowledge from previous missions using Natural Language

Processing (NLP), which is a different approach, than generating designs based on engineering calculations and the

experience of the designing CE team.

Buettner et al. [3] developed the iCASD tool which is capable of creating satellite designs. The work primarily focuses

on component placement within the satellite, but also offers simple component selection capabilities. The iCASD project

is a capable visualisation and component positioning tool, but the proposed PhD research offers increased component

selection functionalities and integration in an existing MBSE/CE workflow.

In addition to the machine learning (ML) discussed here, Expert Systems have been studied as another branch of AI to

support the CE process, like [4].

In summary, AI has been explored to be used for CE studies before, but the main focus relied on extracting information

from historical missions, using Experts Systems or NLP to support the designing teams. The proposed research uses a

method to generate systems without the challenge to analyse the documents, mails and technical descriptions of other

missions. The feasibility of this approach has been first demonstrated for regular RL [1], but the usability of DRL had yet

to been demonstrated.

Additionally, none of the work were made open source, so that future development on the topic of AI-supported concept

generation could be ensured.

DESIGN OVERIVEW

It was the general idea of this work to create a self-taught “design expert”, that is very skilled in the use of a given

component database. This tool can then be used to create capable system designs with respect to a given set of mission

requirements. By relying on engineering calculations, the AI was tasked to learn its designing strategy, in contrast to

relying on extracted knowledge from historical mission concepts.

The DRL Concept Creator (DCC) is an AI software tool, that uses Deep Reinforcement Learning (DRL) to build satellite

concepts with real Commercial-Off-The-Shelf (COTS) parts to support the CE process.

Fig 1 illustrates the underlying functionality and integration into a CE workflow. Like for any normal CE studies, initially

first, rough mission requirements have to be formalised. From there on the AI selects COTS components from a database

and combines it to a system concept, which is represented as a list of selected components. This concept will then be

examined by the CE team and can be used for inspiration, training purposes or just a test implementation to check, how

the current system design could be realised using real-world components.

The CE team has full control about the criteria and mechanisms the AI uses to comprise the system design and can adjust

them by simply changing the implemented calculations. Further, when moving to the next design iteration, the mission

requirements can be adjusted to represented the current state of mission design, which will be used by the tool to create

an updated mission design.

Figure 1: Schematic overview of the CE integration and working principle.

SECESA 2022

This back and forth, between the concept creation tool and the designing team, was designed to work in an iterative

manner together with any regular CE process. Furthermore, the DCC tool is intended to accompany the engineering team

to enhance its capabilities and not replacing it.

TECHNICAL IMPLEMENTATION

For the implementation of the DCC, three main aspects had to be designed: a tool to create the component database, the

AI agent that learns the task of finding a suitable component set and the learning environment for the agent to gain

experience in .

The following components of the software were built with high modularity in mind. It is therefore possible to change the

component database, agent learning algorithm and environment implementation with little effort thanks to easy interfaces.

SatSearch.co is a web shop which offers a variety of COTS space equipment. Because of its clear hierarchical organisation

of components and open declaration of component specification, it was selected as the source for the component database.

Using the HTML parser Beautiful Soup 4, the complete SatSearch web shop were scrapped for all available components

and their specifications. These information were then compiled into one CSV file and every component were given a

unique ID and tags based on their SatSearch (sub)categories.

For the AI agent, Duelling Deep Q-Networks (DDQN) were chosen as the DRL algorithm because of its proven learning

effectiveness [5] and exhaustive online documentation [6]. Additionally, it is a progression from the original DQN

algorithm, which was recommended previous research on this topic [1]. TensorFlow was used for the implementation of

the RL agent and the NN.

As illustrated in Fig. 1, the DCC takes mission requirements and creates a mission design accordingly. Therefore, the RL

agent makes a component selection from the component database based on the user-defined system design constraints.

The evaluation and optimisation of a design thus is done inside the learning environment: This is achieved by calculating

a reward, which is a numerical number characterising the performance of a compiled design variant. The reward functions

as the feedback to the design agent who can learn from this experience and adjust its component selection strategy

accordingly to be able to gain a higher reward. As a result, the DCC can gradually evolve a design towards an optimum

with respect to the implemented component evaluation functions.

Fig. 2 illustrates the generation of the system reward. The agent calculates an individual reward for every single

component, based on technical performance calculations in the same way, the domain experts perform their component

system evaluations for the CE design activity. Each component reward is based on a variety of general and domain-

specific parameters such as power, mass or component-specific parameters. Lastly, the complete system gets evaluated

as a on system level, before all rewards get combined into one single system reward.

The RL environment defines, which elements are supported by the DCC system and how each component gets evaluated.

The current version of the software supports a reduced CubeSat system consisting of Camera, Reaction Wheel,

Transceiver, Solar Panel and Battery. Limited by the 6 month timeframe of the master thesis and the prototype status of

the implementation, the influences between components is only modelled by the evaluation for the battery component,

which is why the reward calculation for the battery is the most sophisticated, as indicated by Fig. 2. Decisions about

which elements to include in the design generation and with how many entities can be configured in a dedicated system

architecture file.

Figure 2: Overview of the complete system reward building with the considered component parameters. "+"

indicating a parameter where a higher value is better and vice versa for "-"..

SECESA 2022

Just like in traditional CE studies, the tool takes propagating effects of the different components and system configurations

throughout the entire design into account, although in the current prototype version, only in a basic form. Following the

aforementioned modular design approach, the software is designed with other systems in mind, so that it can be easily

extended to support more satellite components and used for entirely different systems as well, like the Ground Segment.

The outcome of the system generation process is shown in Tab1. Based on the implemented evaluation functions on

component and system level, the tool selected the listed components from the component database.

Table 1: Complete 5 component system generated by the AI-powered DCC tool.

 Reaction Wheel Transceiver Camera Solar Panel Battery

URL Link Link Link Link Link

Mass 21g 72g 400g 570g 125g

Consumed Power < 0.8 W 0.18 – 3.1 W 2.6 – 4.5 W -19.2 W -

Bus Voltage 3.5 – 11V 12 V 4.5 – 5V 19.2 V 3.7 V

Battery Capacity 6000 mAh

GSD 39 m @ 500km

Transmit Power < 33 dBm

Angular Momentum Storage -1.5 – 1.5 mNms

Total System Mass 1188g

Total max System Power

Consumption

8.4 W

VALIDATION AND DISCISSION

The AI system were designed, to learn to design a satellite system given a component database and a set of constraints.

To validate the success, three aspects were tested: the capability of the implement system to generate valid CubeSat

designs, if the generated concepts are optimal solutions and how robust the concepts creation process is.

In general, ML applications are designed to learn a certain skill, which is hard to define correctly. The agent may be able

to learn to maximise its reward function, but this does not imply this yields the intended result. Setting the correct

incentives is not always obvious and it is therefore not sufficient to verify, that the system is able to reach a stable learning

process (showcasing that it learned something). Instead, specific tests have to be conducted.

Validating the concept creation of the developed system was consequently done in two ways: the system creation

containing 1 to 5 components were tested against the best possible component combination found by a combinatoric

“brute-force” search and real-world CubeSat missions. Comparison with real missions is however just an estimation,

since the DCC can only build a system with the available components from the SatSearch web shop, while real missions

do not have the same limitation and can even design their own equipment.

Additionally, the trained model was tested regarding its robustness. During training, the AI agent learns its component

selection strategy with regard to a specific set of constraints. Testing the trained model with altered constraints shows

how well the AI can abstract from its learned scenario.

Validation showed, that the system generally works as intended. The system is able to learn a strategy for an arbitrary

component amount (1 to 5 components tested in various combinations), independent of the CubeSat system configuration.

Secondly, it could be demonstrated that the AI agent is not only capable of improving its component selection during its

learning process, but also, that the learned strategy can lead to the optimal result.

Compared with real-world missions, the DCC tool works best for 1U CubeSat designs. This is explained by its reduced

set of considered parameters and it therefore works best for systems with low complexity.

A comparison with various real-world CubeSat missions showed, that the generated designs are lighter and consume less

power. This is to be expected, since the DCC tool currently does not support components like thermal isolation, structure

frames or cables and connectors.

The current implementation of the DCC takes only mission architecture parameters into account. Although orbit

parameters influence the evaluation of the components through parameters like the Ground Sampling Distance for the

camera, the resulting trained models are not optimised for altered orbit parameters.

To address this, future research on this topic will introducing the orbit parameters as input influences to the NN alongside

the system architecture information.

https://satsearch.co/products/aac-clyde-rw210-cubesat-reaction-wheels
https://satsearch.co/products/aphelion-uhf-vhf-radio
https://satsearch.co/products/dragonfly-aerospace-gecko-imager
https://satsearch.co/products/endurosat-6u-deployable-solar-array
https://satsearch.co/products/exa-25-whr-high-energy-density-li-po-battery-array

SECESA 2022

Table 2: Overview of the comparison between the generated designs and real-world CubeSat mission. The delta

indicates the difference from the real mission to the created design: -22%: the DCC design is 22% lighter, than

the real one.

CONCLUSION

In context of a 6 month master thesis conducted at the CELab, TU Darmstadt, an AI system capable of CubeSat concept

generation has been developed based on Deep Reinforcement Learning (DRL) .The DRL Concept Creation (DCC) tool

selects suitable satellite components from a database of COTS components fitted to a set of defined system/mission

requirements, just be evaluating sets of components.

With this, it could be shown that DRL can be used to build a satellite design where the decision process is based on

engineering calculations utilising DRL. It was possible to select suitable components and to compose a satellite design

automatically, satisfying formalised design constraints. This process resembled the trade-off studies performed during

Concurrent Engineering (CE) studies, however performed by making use of AI. Feasibility of the followed system

creation approach were verified with real-world CubeSat missions.

The modularity of the DCC’s software design allows a simple expansion to support more components and systems, as

well as adjustment to the implemented component evaluations.

The DCC tool is currently a prototype, just supporting a reduced CubeSat architecture

Future research on this topic will be conducted in a PhD research in the context of the AI for Concurrent Engineering

(AI4CE) project. The focus will be on further expanding system creation and requirement definition capabilities, a tight

integration into the MBSE workflow, as well as a way to introduce knowledge gained by the operating teams directly into

the mission design process.

The software has been made open source under the gplv3 license: https://gitlab.com/jan-peter/drl-concept-creator

References

[1] Krijnen, Bas. "Assessment of Reinforcement Learning for CubeSat concept generation." (2020).
[2] Berquand, Audrey, et al. "Artificial intelligence for the early design phases of space missions." 2019 IEEE

Aerospace Conference. IEEE, 2019.
[3] Buettner, Timothee, et al. "The intelligent Computer Aided Satellite Designer iCASD-Creating viable configurations

for modular satellites." 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). IEEE, 2018.
[4] Murdaca, F., et al. "Artificial intelligence for early design of space missions in support of concurrent engineering

sessions." 8th International Systems & Concurrent Engineering for Space Applications Conference. 2018.
[5] Hessel, Matteo, et al. "Rainbow: Combining improvements in deep reinforcement learning." Thirty-second AAAI

conference on artificial intelligence. 2018.
[6] https://pythonprogramming.net/deep-q-learning-dqn-reinforcement-learning-python-tutorial/

Comparison Mission Orbit Information Included Components Mass Delta

Power Delta

OPS-Sat (3U) a = 6871 km

i = 97.47°

Reaction Wheel, Transceiver, Camera,

Solar Panel, Battery

-22%

-44%

UPSat (3U) a = 6771 km

i= 51.6°

Transceiver, Solar Panel, Battery -80%

-65%

EQUiSat (1U) a = 6871 km

i = 97.47°

Transceiver, Solar Panel, Battery -38%

-54%

BOBCat (3U) a = 6871 km

i = 97.47°

Transceiver, Camera, Solar Panel, Battery -67%

-44%

https://gitlab.com/jan-peter/drl-concept-creator
https://pythonprogramming.net/deep-q-learning-dqn-reinforcement-learning-python-tutorial/

